

PD-97957A

Radiation Hardened Power MOSFET -100V, -23A, P-channel, R9 Technology

Features

- Single event effect (SEE) hardened (up to LET of 91.2 MeV·cm²/mg)
- Low R_{DS(on)}
- Rugged SOA
- Improved avalanche energy
- Simple drive requirements
- Hermetically sealed
- Electrically isolated case
- Ceramic eyelets (Low-Ohmic TO-257AA)
- Light weight
- ESD rating: class 2 per MIL-STD-750, Method 1020

Potential Applications

- Latching current limiter

DC-DC converter Motor drives

Product Summary

BV_{DSS}: -100V

In: -23A

 $R_{DS(on), max}$: 76m Ω

Q_{Gmax}: 50nC

REF: MIL-PRF-19500/780

Product Validation

Qualified according to MIL-PRF-19500 for space applications

Description

IR HiRel R9 technology provides superior power MOSFETs for space applications. This family of p-channel MOSFETs are the first radiation hardened devices that are based on a superjunction technology. These devices have improved immunity to Single Event Effect (SEE) and have been characterized for useful performance with Linear Energy Transfer (LET) up to 91.2 MeV·cm²/mg. Their combination of low R_{DS(on)} and improved SOA allows for better performance in applications such as Latching Current Limiters (LCL), Solid-State Power Controllers (SSPC) or DC-DC converters. These devices retain all of the well-established advantages of MOSFETs such as voltage control, fast switching and temperature stability of electrical parameters.

Ordering Information

Table 1 **Ordering options**

Part number	Package	Screening Level	TID Level
IRHYS9A97130CM	Low-Ohmic TO-257AA	COTS	100 krad(Si)
JANSR2N7660T3	Low-Ohmic TO-257AA	JANS	100 krad(Si)
IRHYS9A93130CM	Low-Ohmic TO-257AA	COTS	300 krad(Si)
JANSF2N7660T3	Low-Ohmic TO-257AA	JANS	300 krad(Si)
IRHYB9A97130CM Tabless TO-257AA		COTS	100 krad(Si)
JANSR2N7660D5	Tabless TO-257AA	JANS	100 krad(Si)
IRHYB9A93130CM Tabless TO-257AA		COTS	300 krad(Si)
JANSF2N7660D5 Tabless TO-257AA		JANS	300 krad(Si)

Table of contents

Table of contents

Feat	ures	1
Pote	ential Applications	1
	uct Validation	
	ering Information	
	e of contents	
1	Absolute Maximum Ratings	
2	Device Characteristics	
2.1	Electrical Characteristics (Pre-Irradiation)	
2.2	Source-Drain Diode Ratings and Characteristics (Pre-Irradiation)	
2.3	Thermal Characteristics	5
2.4	Radiation Characteristics	5
2.4.1	Electrical Characteristics - Post Total Dose Irradiation	5
2.4.2	Single Event Effects – Safe Operating Area	6
3	Electrical Characteristics Curves (Pre-irradiation)	7
4	Test Circuits (Pre-irradiation)	11
5	Package Outline (Low-Ohmic TO-257AA)	12
6	Package Outline (Tabless TO-257AA)	
Revis	sion history	

Radiation Hardened Power MOSFET Thru-Hole (TO-257AA)

Absolute Maximum Ratings

Absolute Maximum Ratings 1

Table 2 **Absolute Maximum Ratings (Pre-Irradiation)**

Symbol	Parameter	Value	Unit
I_{D1} @ V_{GS} = -12V, T_{C} = 25°C	Continuous Drain Current	-23	Α
I_{D2} @ V_{GS} = -12V, T_{C} = 100°C	Continuous Drain Current	-15	Α
I_{DM} @ $T_{C} = 25^{\circ}C$	Pulsed Drain Current ¹	-92	Α
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	75	W
	Linear Derating Factor	0.6	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	٧
E _{AS}	Single Pulse Avalanche Energy ²	1045	mJ
I_{AR}	Avalanche Current ¹	-15	Α
E _{AR}	Repetitive Avalanche Energy ¹	7.5	mJ
dv/dt	Peak Diode Reverse Recovery ³	-11.6	V/ns
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to +150	°C
	Lead Temperature	300 (0.063in./1.6mm from case for 10s)	
	Weight	4.3 (Typical)	g

¹ Repetitive Rating; Pulse width limited by maximum junction temperature.

 $^{^2}$ V_{DD} = -100V, starting T_J = 25°C, L = 9.3mH, Peak I_L = -15A, V_{GS} = -20V

 $^{^3}$ I_{SD} \leq -23A, di/dt \leq -990A/ μ s, V_{DD} \leq -100V, T $_J$ \leq 150°C

Radiation Hardened Power MOSFET Thru-Hole (TO-257AA)

Device Characteristics

2 Device Characteristics

2.1 Electrical Characteristics (Pre-Irradiation)

Table 3 Static and Dynamic Electrical Characteristics @ T_j = 25°C (Unless Otherwise Specified)

				<u> </u>	(ess other mise opecimea,	
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	
BV _{DSS}	Drain-to-Source Breakdown Voltage	-100	_	_	V	$V_{GS} = 0V, I_D = -1.0 \text{mA}$	
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	_	-0.10	_	V/°C	Reference to 25°C, I₀ = -1.0mA	
R _{DS(on)}	Static Drain-to-Source On-State Resistance	_	_	76	mΩ	$V_{GS} = -12V$, $I_{D2} = -15A^{1}$	
$V_{GS(th)}$	Gate Threshold Voltage	-2.0	_	-4.0	V		
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient	_	5.3	_	mV/°C	$V_{DS} \ge V_{GS}$, $I_D = -1mA$	
Gfs	Forward Transconductance	12	_	_	S	$V_{DS} = -15V$, $I_{D2} = -15A^{1}$	
	Zoro Cata Valtaga Drain Current	_	_	-10		$V_{DS} = -80V, V_{GS} = 0V$	
I _{DSS}	Zero Gate Voltage Drain Current	_	_	-25	μΑ	$V_{DS} = -80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$	
1	Gate-to-Source Leakage Forward	_	_	-100	nA	V _{GS} = -20V	
I _{GSS}	Gate-to-Source Leakage Reverse	_	_	100	IIA	V _{GS} = 20V	
Q_{G}	Total Gate Charge	_	_	50		I _{D1} = -23A	
Q_{GS}	Gate-to-Source Charge	_	_	16	nC	V _{DS} = -50V	
Q_{GD}	Gate-to-Drain ('Miller') Charge	_	_	12		V _{GS} = -12V	
$t_{d(on)}$	Turn-On Delay Time	_	_	21		I _{D1} = -23A **	
t _r	Rise Time		_	60		$V_{DD} = -50V$	
t _{d(off)}	Turn-Off Delay Time	_	_	68	ns	$R_G = 7.5\Omega$	
t _f	Fall Time	_	_	38		$V_{GS} = -12V$	
L _s +L _D	Total Inductance	_	6.8	_	nH	Measured from Drain lead (6mm /0.25in. from package) to Source lead (6mm /0.25in. from package) with Source wires internally bonded from Source Pin to Drain Pad	
C _{iss}	Input Capacitance		2490	_		$V_{GS} = 0V$	
C _{oss}	Output Capacitance		490	_	pF	V _{DS} = -25V	
C _{rss}	Reverse Transfer Capacitance		6.6	_		f = 1.0MHz	
R_{G}	Gate Resistance	_	5.6	_	Ω	f = 1.0MHz, open drain	

^{**} Switching speed maximum limits are based on manufacturing test equipment and capability.

 $^{^1}$ Pulse width \leq 300 $\mu s;$ Duty Cycle \leq 2%

Device Characteristics

2.2 Source-Drain Diode Ratings and Characteristics (Pre-Irradiation)

Table 4 Source-Drain Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
Is	Continuous Source Current (Body Diode)	_	_	-23	Α	
I _{SM}	Pulsed Source Current (Body Diode) ¹	_	_	-92	Α	
V_{SD}	Diode Forward Voltage	_	_	-1.3	V	$T_J = 25$ °C, $I_S = -23A$, $V_{GS} = 0V^2$
t _{rr}	Reverse Recovery Time	_	75	113	ns	$T_J = 25^{\circ}C$, $I_F = -23A$, $V_{DD} \le -25V$
Q _{rr}	Reverse Recovery Charge	_	255	1	nC	$di/dt = -100A/\mu s^{-2}$
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

2.3 Thermal Characteristics

Table 5 Thermal Resistance

Symbol	Parameter	Min.	Тур.	Max.	Unit
$R_{\theta JC}$	Junction-to-Case	_	_	1.67	°C /\\
$R_{\theta JA}$	Junction-to-Ambient	_	_	80	°C/W

2.4 Radiation Characteristics

IR HiRel radiation hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at IR HiRel is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 3 and 4) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

2.4.1 Electrical Characteristics - Post Total Dose Irradiation

Table 6 Electrical Characteristics @ T_i = 25°C, Post Total Dose Irradiation ^{3, 4}

C b. a l	D	Up to 300	krads (Si)⁵		T	
Symbol	Parameter	Min.	Max.	Unit	Test Conditions	
BV _{DSS}	Drain-to-Source Breakdown Voltage	-100	_	V	$V_{GS} = 0V$, $I_D = -1mA$	
$V_{GS(th)}$	Gate Threshold Voltage	-2.0	-4.0	V	$V_{DS} \ge V_{GS}$, $I_D = -1mA$	
	Gate-to-Source Leakage Forward	_	-100	A	V _{GS} = -20V	
I_{GSS}	Gate-to-Source Leakage Reverse	_	100	nA	V _{GS} = 20V	
I _{DSS}	Zero Gate Voltage Drain Current	_	-10	μΑ	$V_{DS} = -80V, V_{GS} = 0V$	
R _{DS(on)}	Static Drain-to-Source On-State Resistance (TO-3) ²	_	73	mΩ	$V_{GS} = -12V$, $I_{D2} = -15A$	
R _{DS(on)}	Static Drain-to-Source On-State Resistance (Low-Ohmic TO-257AA) ²		76	mΩ	$V_{GS} = -12V, I_{D2} = -15A$	
V_{SD}	Diode Forward Voltage		-1.3	V	$V_{GS} = 0V, I_F = -23A$	

¹ Repetitive Rating; Pulse width limited by maximum junction temperature.

³ Total Dose Irradiation with V_{GS} Bias. V_{GS} =- 12V applied and V_{DS} = 0 during irradiation per MIL-STD-750, Method 1019, condition A.

 $^{^2}$ Pulse width \leq 300 μ s; Duty Cycle \leq 2%

 $^{^4}$ Total Dose Irradiation with V_{DS} Bias. V_{DS} = -80V applied and V_{GS} = 0 during irradiation per MIL-STD-750, Method 1019, condition A.

⁵ Part numbers IRHYS9A97130CM (JANSR2N7660T3), IRHYS9A93130CM (JANSF2N7660T3), IRHYB9A97130CM (JANSR2N7660D5), and IRHYB9A93130CM (JANSF2N7660D5)

Device Characteristics

2.4.2 Single Event Effects – Safe Operating Area

IR HiRel radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. 1 and Table 7.

Table 7 Typical Single Event Effects Safe Operating Area

LET	Energy	Range		V _{DS}	(V)	
(MeV·cm²/mg)	(MeV)	(μm)	$V_{GS} = 0V$	V _{GS} = 1V	V _{GS} = 5V	V _{GS} = 10V
38.5 ± 2%	336.5 ± 5%	41.4 ± 5%	-100	-100	-100	-100
61.3 ± 2%	623.5 ± 5%	51.5 ± 5%	-100	-100	-100	_
91.2 ± 2%	1322.5 ± 5%	72.9 ± 5%	-100	-100	_	_

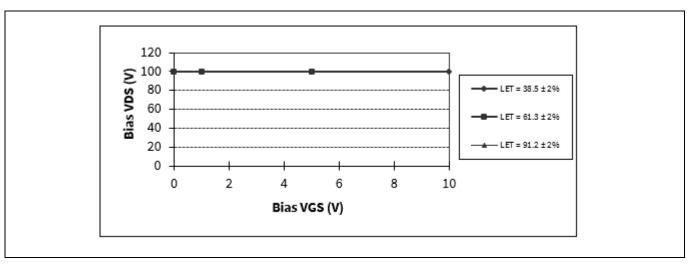


Figure 1 Typical Single Event Effect, Safe Operating Area

Electrical Characteristics Curves (Pre-irradiation)

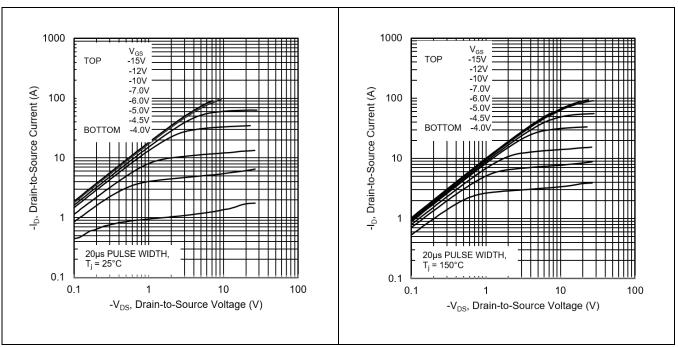


Figure 2 Typical Output Characteristics Figure 3 Typical Output Characteristics

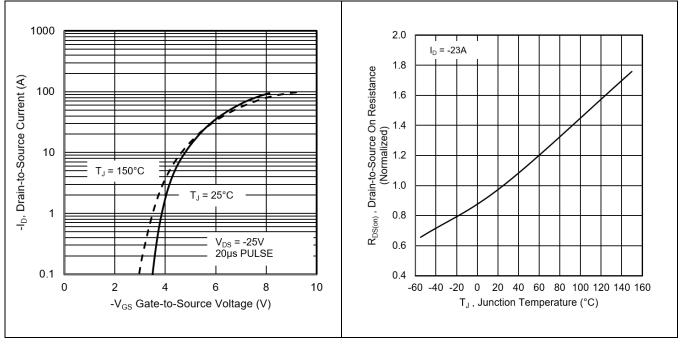


Figure 4 Typical Transfer Characteristics Figure 5 Normalized On-Resistance Vs.

Temperature

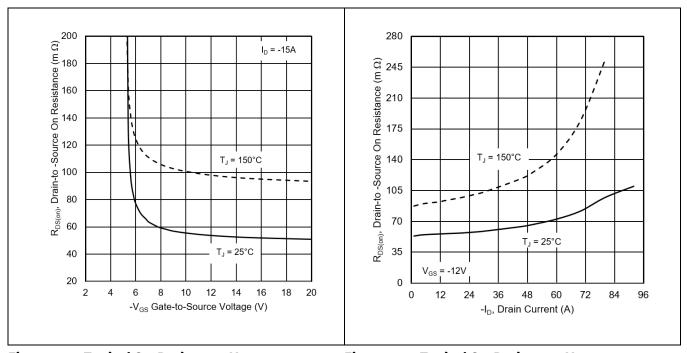


Figure 6 Typical On-Resistance Vs.
Gate Voltage

Figure 7 Typical On-Resistance Vs.

Drain Current

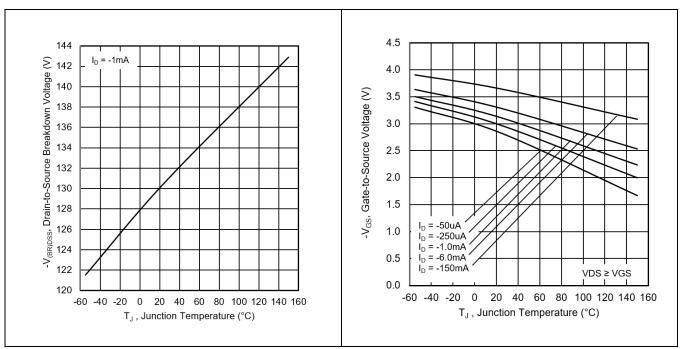


Figure 8 Typical Drain-to-Source Breakdown Voltage Vs. Temperature

Figure 9 Typical Threshold Voltage Vs.
Temperature

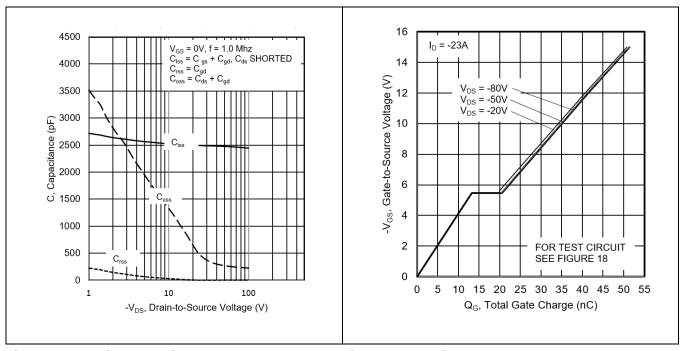


Figure 10 Typical Capacitance Vs.

Drain-to-Source Voltage

Figure 11 Typical Gate Charge Vs.

Gate-to-Source Voltage

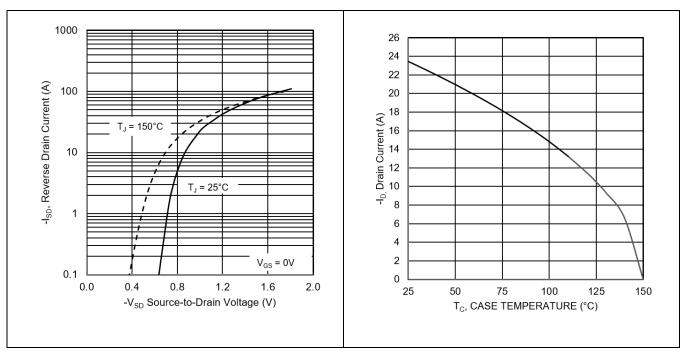


Figure 12 Typical Source-Drain Vs.
Diode Forward Voltage

Figure 13 Maximum Drain Current Vs. Case Temperature

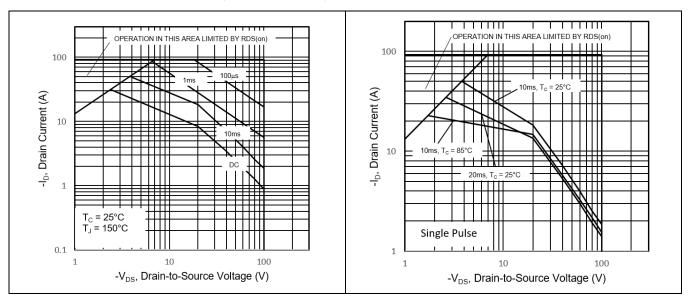


Figure 14 Maximum Safe Operating Area

Figure 15 Maximum Safe Operating Area

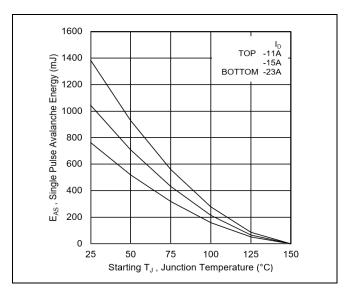


Figure 16 Maximum Avalanche Energy Vs.

Junction Temperature

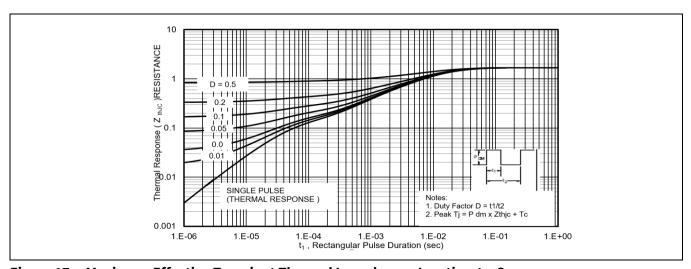


Figure 17 Maximum Effective Transient Thermal Impedance, Junction-to-Case

Test Circuits (Pre-irradiation)

4 Test Circuits (Pre-irradiation)

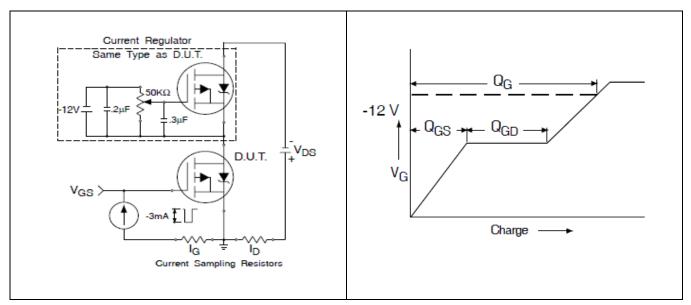


Figure 18 Gate Charge Test Circuit

Figure 19 Gate Charge Waveform

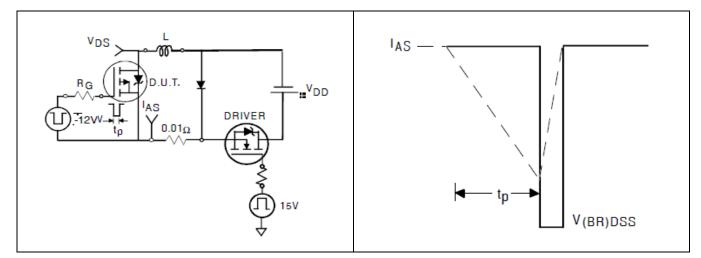


Figure 20 Unclamped Inductive Test Circuit

Figure 21 Unclamped Inductive Waveform

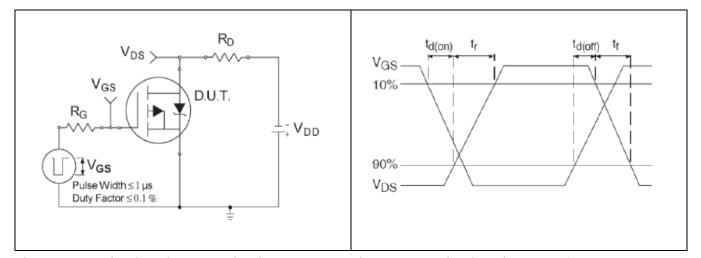
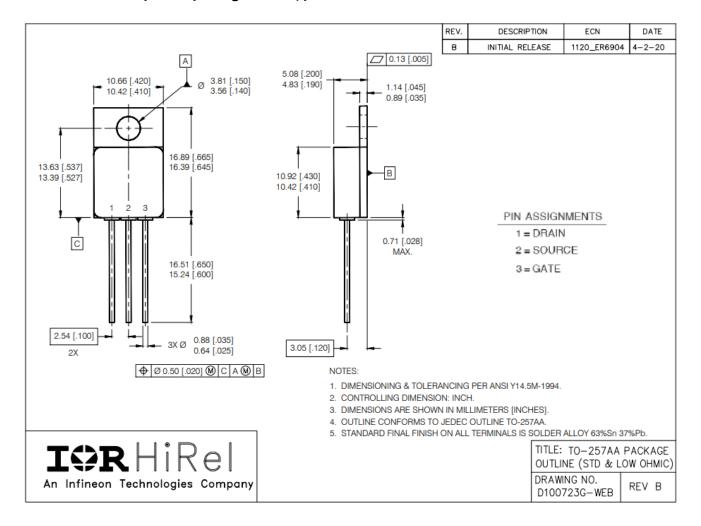


Figure 22 Switching Time Test Circuit


Figure 23 Switching Time Waveforms

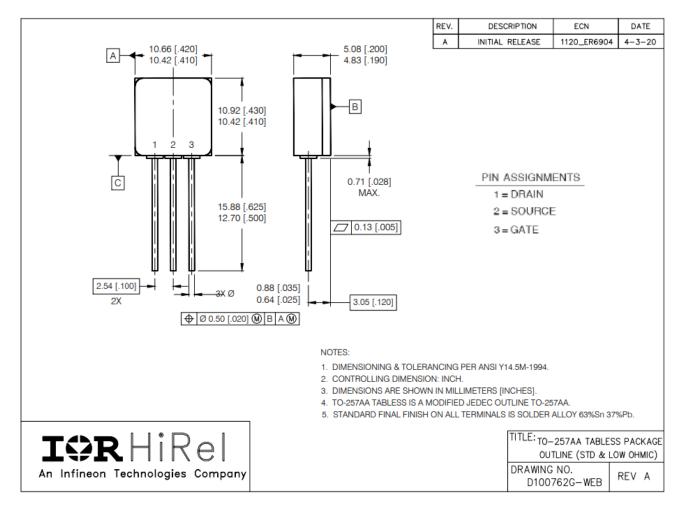
Package Outline (Low-Ohmic TO-257AA)

5 Package Outline (Low-Ohmic TO-257AA)

Note: For the most updated package outline, please see the website: Low-Ohmic TO-257AA

BERYLLIA WARNING PER MIL-PRF-19500

Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.


Radiation Hardened Power MOSFET Thru-Hole (TO-257AA)

Package Outline (Tabless TO-257AA)

6 Package Outline (Tabless TO-257AA)

Note: For the most updated package outline, please see the website: Tabless TO-257AA

BERYLLIA WARNING PER MIL-PRF-19500

Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

Radiation Hardened Power MOSFET Thru-Hole (TO-257AA)

Revision history

Revision history

Document version	Date of release	Description of changes
	04/06/2022	Preliminary datasheet with PPD number (PPD-97957)
Rev A	08/23/2022	Final datasheet with PD number

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-08-23

Published by

International Rectifier HiRel Products, Inc.

An Infineon Technologies company El Segundo, California 90245 USA

© 2025 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

NARNINGS

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest International Rectifier HiRel Products, Inc., an Infineon Technologies company, office.

International Rectifier HiRel Components may only be used in life-support devices or systems with the expressed written approval of International Rectifier HiRel Products, Inc., an Infineon Technologies company, if failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety and effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.