

IRHLF87Y20 PD-97810C

Radiation Hardened Logic Level Power MOSFET Thru-Hole TO-205AF (TO-39) 20V, 12A, N-channel, R8 Technology

Features


- 5V CMOS and TTL compatible
- Low R_{DS(on)}
- Single event effect (SEE) hardened
- Fast switching
- Low total gate charge
- Simple drive requirements
- Hermetically sealed
- Light weight
- ESD rating: Class 1B per MIL-STD-750, Method 1020

Potential Applications

- · Synchronous rectification
- Redundant power distribution
- Motor drives

Product Summary

- Part number: IRHLF87Y20, IRHLF83Y20
- Radiation level: 100 krad(Si), 300 krad(Si)
- $\mathbf{R}_{DS(on), max}$: 32m Ω
- I_D: 12A*

Product Validation

Qualified to IR HiRel's S-level screening flow which is equivalent to MIL-PRF-19500

Description

IR HiRel R8 Logic Level power MOSFETs provide simple solution to interfacing CMOS and TTL control circuits to power devices in space and other radiation environments. The threshold voltage remains within acceptable operating limits over the full operating temperature and post radiation. This is achieved while maintaining single event gate rupture and single event burnout immunity. The device is ideal when used to interface directly with most logic gates, linear IC's, micro-controllers, and other device types that operate from a 3.3-5V source. It may also be used to increase the output current of a PWM, voltage comparator or an operational amplifier where the logic level drive signal is available.

Ordering Information

Table 1 Ordering options

abte 2 Gracing options						
Part number	Package	Screening Level	TID Level			
IRHLF87Y20	TO-39	сотѕ	100 krad(Si)			
IRHLF83Y20	TO-39	сотѕ	300 krad(Si)			
IRHLF87Y20SCS	TO-39	S-level	100 krad(Si)			
IRHLF83Y20SCS	TO-39	S-level	300 krad(Si)			

IRHLF87Y20

Table of contents

Table of contents

Featı	ures	1
Pote	ntial Applications	1
Prod	uct Validation	1
Desc	ription	1
	ring Information	
	e of contents	
1	Absolute Maximum Ratings	
2	Device Characteristics	
2.1	Electrical Characteristics (Pre-Irradiation)	
2.2	Source-Drain Diode Ratings and Characteristics (Pre-Irradiation)	
2.3	Thermal Characteristics	
2.4	Radiation Characteristics	5
2.4.1	Electrical Characteristics — Post Total Dose Irradiation	5
2.4.2	Single Event Effects — Safe Operating Area	6
3	Electrical Characteristics Curves (Pre-irradiation)	7
4	Test Circuits (Pre-irradiation)	.11
5	Package Outline	.12
Revis	sion history	

Absolute Maximum Ratings

Absolute Maximum Ratings 1

Absolute Maximum Ratings (Pre-Irradiation) Table 2

Symbol	Parameter	Value	Unit
I_{D1} @ V_{GS} = 4.5V, T_{C} = 25°C	Continuous Drain Current	12*	Α
I_{D2} @ V_{GS} = 4.5V, T_{C} = 100°C	Continuous Drain Current	10.2	Α
I_{DM} @ $T_C = 25^{\circ}C$	Pulsed Drain Current ¹	48	Α
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	15.6	W
	Linear Derating Factor	0.13	W/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
E _{AS}	Single Pulse Avalanche Energy ²	43	mJ
I_{AR}	Avalanche Current ¹	12	Α
E _{AR}	Repetitive Avalanche Energy ¹	1.6	mJ
dv/dt	Peak Diode Reverse Recovery ³	2.85	V/ns
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to +150	°C
	Lead Temperature	300 (0.063 in. /1.6 mm from case for 10s)	
	Weight	0.98 (Typical)	g

^{*}Current is limited by package

¹ Repetitive Rating; Pulse width limited by maximum junction temperature.

 $^{^2}$ V_{DD} = 20V, starting T_J = 25°C, L = 0.6mH, Peak I_L = 12A, V_{GS} = 12V

 $^{^3}$ I_{SD} \leq 12A, di/dt \leq 423A/ μs , V_{DD} \leq 20V, T_J \leq 150°C

Device Characteristics

2 Device Characteristics

2.1 Electrical Characteristics (Pre-Irradiation)

Table 3 Static and Dynamic Electrical Characteristics @ T_j = 25°C (Unless Otherwise Specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	
BV _{DSS}	Drain-to-Source Breakdown Voltage	20	_	_	V	$V_{GS} = 0V, I_D = 250 \mu A$	
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	_	0.03	_	V/°C	Reference to 25°C, I _D = 250μA	
	Static Drain-to-Source On-State	_	27	32		$V_{GS} = 4.5V$, $I_{D2} = 10.2A^{1}$	
R _{DS(on)}	Resistance		26	31	mΩ	$V_{GS} = 7.0V$, $I_{D2} = 10.2A^4$	
$V_{GS(th)}$	Gate Threshold Voltage	1.0	_	2.3	V	V -V 1 -250·A	
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient	_	-4.7	_	mV/°C	$V_{DS} = V_{GS}, I_D = 250 \mu A$	
Gfs	Forward Transconductance	20	_	_	S	$V_{DS} = 15V$, $I_{D2} = 10.2A^{1}$	
	Zana Cata Valta an Busin Comment	_	_	1.0	_	$V_{DS} = 16V, V_{GS} = 0V$	
I _{DSS}	Zero Gate Voltage Drain Current	_	_	10	μΑ	V _{DS} = 16V, V _{GS} = 0V, T _J = 125°C	
	Gate-to-Source Leakage Forward	_	_	100	ι. Δ	V _{GS} = 12V	
I_{GSS}	Gate-to-Source Leakage Reverse	_	_	-100	nA	V _{GS} = -12V	
$\overline{Q_G}$	Total Gate Charge	_	20	27		I _{D1} = 12A	
$\overline{Q_GS}$	Gate-to-Source Charge	_	6.5	7.5	nC	V _{DS} = 10V	
$\overline{Q_{GD}}$	Gate-to-Drain ('Miller') Charge	_	4.5	8.5		$V_{GS} = 5.5V$	
t _{d(on)}	Turn-On Delay Time	_	17	21		I _{D1} = 12A **	
t _r	Rise Time	_	63	114]	$V_{DD} = 10V$	
t _{d(off)}	Turn-Off Delay Time	_	26	30	ns	$R_G = 2.35\Omega$	
t _f	Fall Time	_	12	22		$V_{GS} = 5.5V$	
$L_s + L_D$	Total Inductance	_	7.0	_	nH	Measured from Drain lead (6mm 0.25 in from package) to Sourc lead (6mm/ 0.25 in from package with Source wire internal bonded from Source pin to Drain pin	
C _{iss}	Input Capacitance		2431	_		$V_{GS} = 0V$	
C _{oss}	Output Capacitance		592	_	pF	$V_{DS} = 20V$	
C _{rss}	Reverse Transfer Capacitance	_	143	_		f = 1.0MHz	
R_{G}	Gate Resistance	_	0.94	_	Ω	f = 1.0MHz, open drain	

^{**} Switching speed maximum limits are based on manufacturing test equipment and capability.

-

 $^{^{1}}$ Pulse width \leq 300 $\mu s;$ Duty Cycle \leq 2%

Device Characteristics

2.2 Source-Drain Diode Ratings and Characteristics (Pre-Irradiation)

Table 4 Source-Drain Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	
Is	Continuous Source Current (Body Diode)	_	_	12	Α		
I _{SM}	Pulsed Source Current (Body Diode) ¹	_	1	48	Α		
V_{SD}	Diode Forward Voltage	_	1	1.2	V	$T_J = 25$ °C, $I_S = 12A$, $V_{GS} = 0V^2$	
t _{rr}	Reverse Recovery Time	_	1	41	ns	$T_J = 25$ °C, $I_F = 12A$, $V_{DD} \le 20V$	
Q _{rr}	Reverse Recovery Charge	_	1	51	nC	di/dt = 100A/μs ²	
t_{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L_S+L_D)					

2.3 Thermal Characteristics

Table 5 Thermal Resistance

Symbol	Parameter	Min.	Тур.	Max.	Unit
$R_{ heta JC}$	Junction-to-Case	1	_	8.0	°C/W

2.4 Radiation Characteristics

IR HiRel radiation hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at IR HiRel is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 3 and 4) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

2.4.1 Electrical Characteristics — Post Total Dose Irradiation

Table 6 Electrical Characteristics @ T_J = 25°C, Post Total Dose Irradiation ^{3, 4}

C l l	Barranatan	Up to 300	0 krad (Si)		Test Conditions	
Symbol	Parameter	Min.	Max.	Unit		
BV _{DSS}	Drain-to-Source Breakdown Voltage	20	_	V	$V_{GS} = 0V, I_D = 250 \mu A$	
$V_{GS(th)}$	Gate Threshold Voltage	1.0	2.3	V	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	
I _{GSS}	Gate-to-Source Leakage Forward	_	100	0	V _{GS} = 12V	
	Gate-to-Source Leakage Reverse	_	-100	nA	V _{GS} = -12V	
I _{DSS}	Zero Gate Voltage Drain Current	_	1.0	μΑ	$V_{DS} = 16V, V_{GS} = 0V$	
R _{DS(on)}	Static Drain-to-Source On-State Resistance (TO-3) ²	_	32	mΩ	$V_{GS} = 4.5V, I_{D2} = 10.2A$	
R _{DS(on)}	Static Drain-to-Source On-State Resistance (TO-39) ²	_	32	mΩ	$V_{GS} = 4.5V$, $I_{D2} = 10.2A$	
$\overline{V_{SD}}$	Diode Forward Voltage	_	1.2	V	$V_{GS} = 0V, I_F = 12A$	

¹ Repetitive Rating; Pulse width limited by maximum junction temperature.

 $^{^2}$ Pulse width \leq 300 $\mu s;$ Duty Cycle \leq 2%

³ Total Dose Irradiation with V_{GS} Bias. V_{GS} = 12V applied and V_{DS} = 0 during irradiation per MIL-STD-750, Method 1019, condition A.

⁴ Total Dose Irradiation with V_{DS} Bias. V_{DS} = 16V applied and V_{GS} = 0 during irradiation per MlL-STD-750, Method 1019, condition A.

Device Characteristics

2.4.2 Single Event Effects — Safe Operating Area

IR HiRel radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. 1 and Table 7.

Table 7 Worst Case Single Event Effects Safe Operating Area

LET	Energy	Range	V _{DS} (V)			
(MeV·cm²/mg)	(MeV)	(μm)	$V_{GS} = 0V$	V _{GS} = -1V	V _{GS} = -2V	
40 ± 5%	275 ± 5%	35.6 ± 5%	14	14	_	
64 ± 7.5%	600 ± 12.5%	49 ± 10%	12	12	_	
92 ± 5%	1150 ± 5%	65.1 ± 5%	10	10	_	

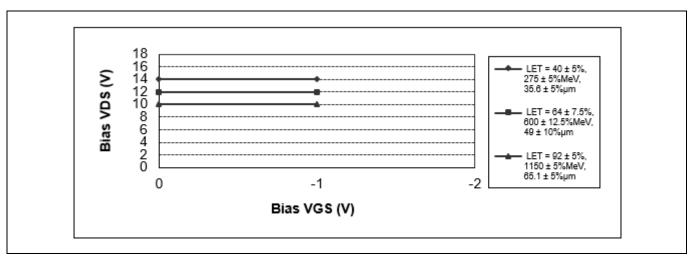


Figure 1 Worst Case Single Event Effect, Safe Operating Area

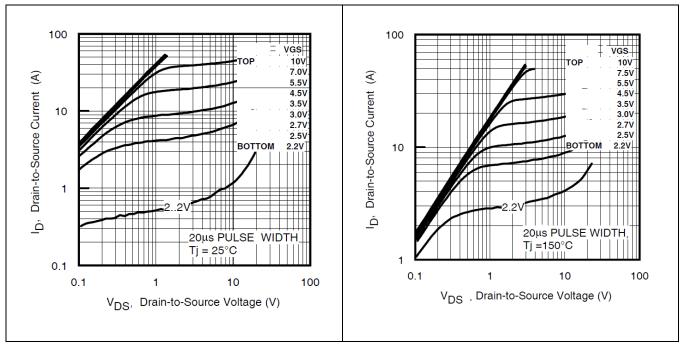


Figure 2 Typical Output Characteristics Figure 3 Typical Output Characteristics

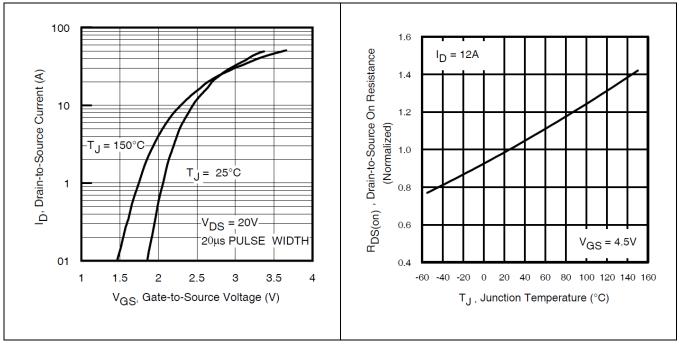


Figure 4 Typical Transfer Characteristics Figure 5 Normalized On-Resistance Vs.

Temperature

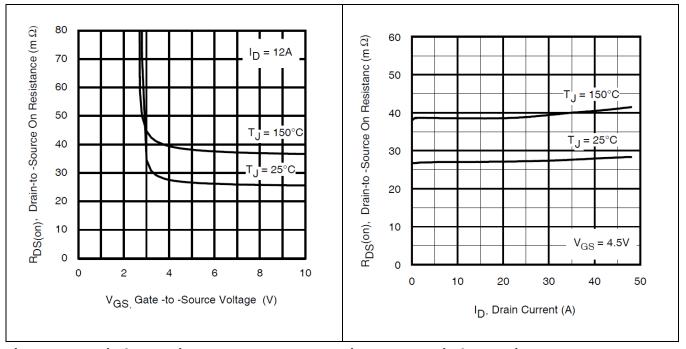


Figure 6 Typical On-Resistance Vs.
Gate Voltage

Figure 7 Typical On-Resistance Vs.

Drain Current

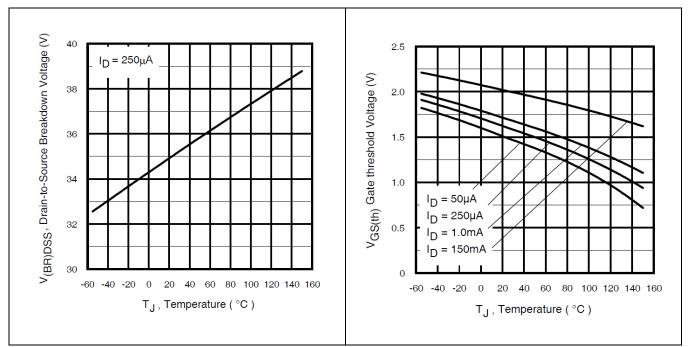


Figure 8 Typical Drain-to-Source Breakdown Voltage Vs. Temperature

Figure 9 Typical Threshold Voltage Vs.
Temperature

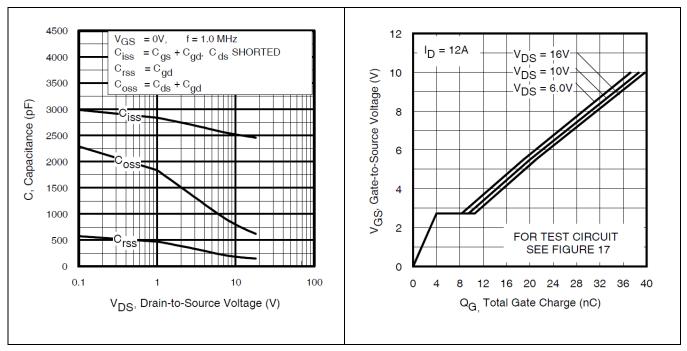


Figure 10 Typical Capacitance Vs.

Drain-to-Source Voltage

Figure 11 Gate-to-Source Voltage Vs.

Typical Gate Charge

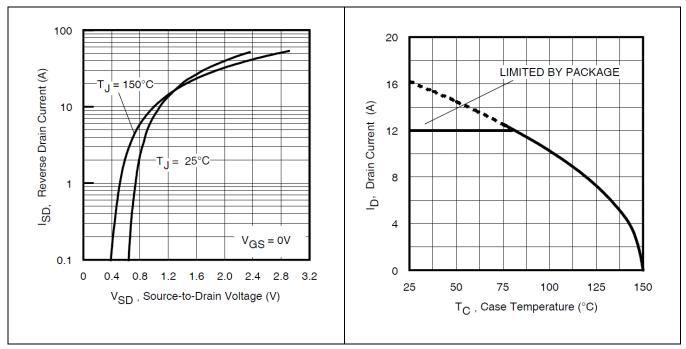


Figure 12 Typical Source-Drain Current Vs.
Diode Forward Voltage

Figure 13 Maximum Drain Current Vs. Case Temperature

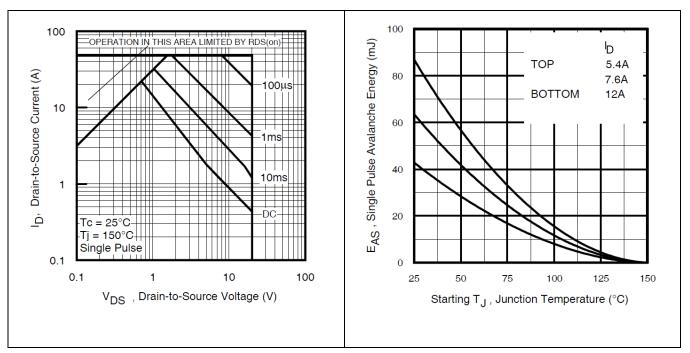


Figure 14 Maximum Safe Operating Area

Figure 15 Maximum Avalanche Energy Vs.
Junction Temperature

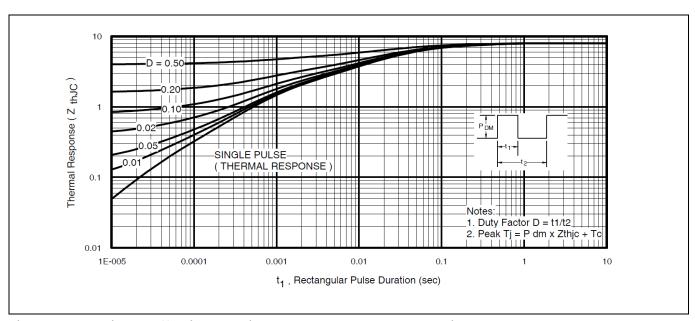


Figure 16 Maximum Effective Transient Thermal Impedance, Junction-to-Case

Test Circuits (Pre-irradiation)

4 Test Circuits (Pre-irradiation)

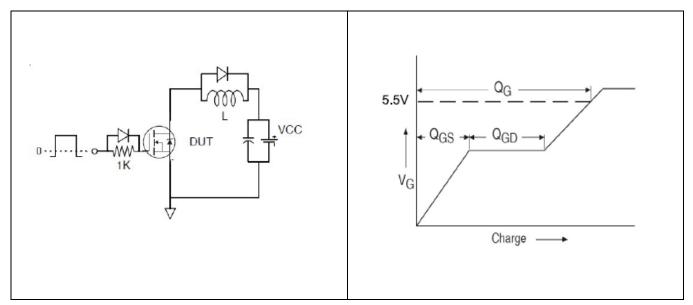


Figure 17 Gate Charge Test Circuit

Figure 18 Gate Charge Waveform

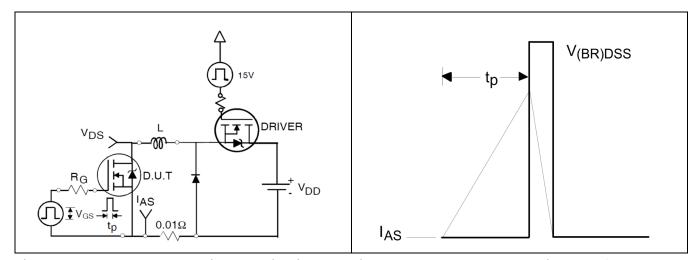


Figure 19 Unclamped Inductive Test Circuit

Figure 20 Unclamped Inductive Waveform

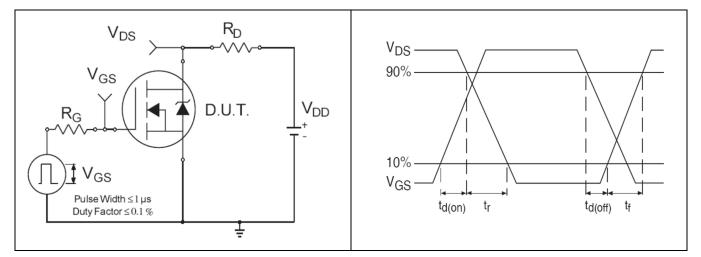
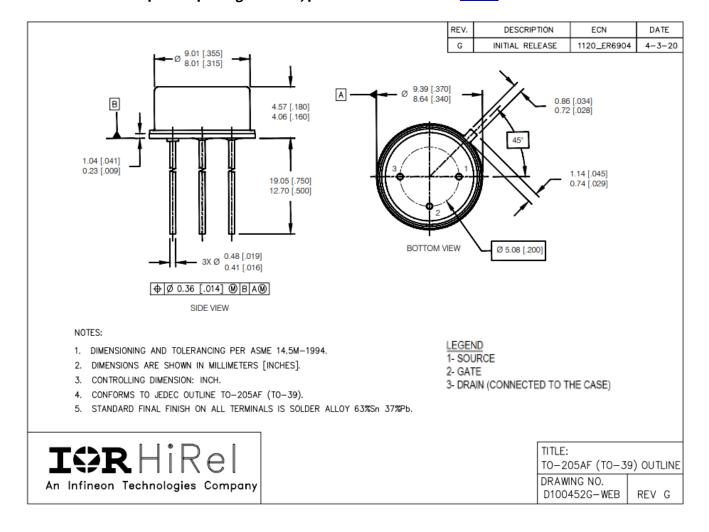


Figure 21 Switching Time Test Circuit


Figure 22 Switching Time Waveforms

Package Outline

5 Package Outline

Note: For the most updated package outline, please see the website: TO-39

IRHLF87Y20

Radiation Hardened Logic Level Power MOSFET Thru-Hole (TO-39)

Revision history

Revision history

Document version	Date of release	Description of changes
	08/13/2013	Datasheet (PD-97810)
Rev A	07/31/2018	Updated based on ECN-1120_05171
Rev B	09/21/2021	Updated based on ECN-1120_08712
Rev C	04/25/2022	Updated based on ECN-1120_09025

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-04-25

Published by

International Rectifier HiRel Products, Inc.

An Infineon Technologies company El Segundo, California 90245 USA

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements components may contain dangerous substances. For information or the types in question please contact your neares International Rectifier HiRel Products, Inc., ar Infineon Technologies company, office.

International Rectifier HiRel Components may only be used in life-support devices or systems with the expressed written approval of International Rectifier HiRel Products, Inc., an Infineon Technologies company, if failure of such components car reasonably be expected to cause the failure of that life-support device or system, or to affect the safety and effectiveness of that device or system.

Infineon Technologies' products may not be used ir any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. I they fail, it is reasonable to assume that the health or the user or other persons may be endangered.