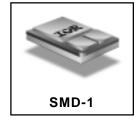
International **ICR** Rectifier

POWER MOSFET SURFACE MOUNT(SMD-1)


Product Summary

Part Number	RDS(on)	ID	
IRFN150	0.07 Ω	34A	

HEXFET® MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

PD - 91547C

IRFN150 JANTX2N7224U JANTXV2N7224U REF:MIL-PRF-19500/592 100V, N-CHANNEL HEXFET[®] MOSFETTECHNOLOGY

Features:

- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Surface Mount
- Dynamic dv/dt Rating
- Light-weight

	Parameter		Units
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	34	
ID @ VGS = 10V, TC = 100°C Continuous Drain Current		21	A
IDM	Pulsed Drain Current ①	136	
PD @ TC = 25°C	Max. Power Dissipation	150	W
	Linear Derating Factor	1.2	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	150	mJ
IAR	Avalanche Current ①	34	Α
EAR	Repetitive Avalanche Energy ①	15	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.5	V/ns
Тј	Operating Junction	-55 to 150	
TSTG Storage Temperature Range			°C
	Package Mounting Surface Temperature	300(for 5 seconds)	
	Weight	2.6 (Typical)	g

Absolute Maximum Ratings

For footnotes refer to the last page

International

pad to center of source pad.

 $V_{GS} = 0V, V_{DS} = 25V$

f = 1.0MHz

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified) Parameter Min Max Units **Test Conditions** Тур BVDSS Drain-to-Source Breakdown Voltage 100 V $V_{GS} = 0V, I_D = 1.0mA$ ____ V/°C Reference to 25°C, ID = 1.0mA ΔBVDSS/ΔTJ Temperature Coefficient of Breakdown 0.13 _ Voltage VGS = 10V, ID = 21A Static Drain-to-Source On-State RDS(on) _ 0.07 _ Ω 0.081 VGS = 10V, ID = 34A Resistance _ _ Gate Threshold Voltage V 2.0 $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ VGS(th) 4.0 VDS > 15V, IDS = 21A ④ Forward Transconductance 9.0 S (7) 9fs Zero Gate Voltage Drain Current 25 VDS= 80V ,VGS=0V IDSS μΑ $V_{DS} = 80V,$ 250 $V_{GS} = 0V, T_J = 125^{\circ}C$ VGS = 20V Gate-to-Source Leakage Forward 100 IGSS — _ nA $V_{GS} = -20V$ Gate-to-Source Leakage Reverse -100 IGSS ____ _ VGS =10V, ID = 34A Qg Total Gate Charge _ _ 125 Qgs Gate-to-Source Charge 22 nC $V_{DS} = 50V$ ___ ___ Gate-to-Drain ('Miller') Charge Qgd 65 _ Turn-On Delay Time 35 $V_{DD} = 50V, I_D = 34A,$ td(on) ____ _ Rise Time 190 $V_{GS} = 10V, R_{G} = 2.35\Omega$ tr _ _ ns ^td(off) Turn-Off Delay Time 170 Fall Time 130 tf Total Inductance Measured from the center of drain Ls+LD 4.0 ____ nH

Source-Drain Diode Ratings and Characteristics

Input Capacitance

Output Capacitance

Reverse Transfer Capacitance

	Parameter		Min	Тур	Мах	Units	Test Conditions
IS	Continuous Source Current (Body Diode)	_		34	Δ	
ISM	Pulse Source Current (Body	Diode) ①	—		136	A	
VSD	Diode Forward Voltage		—		1.8	V	$T_j = 25^{\circ}C, I_S = 34A, V_{GS} = 0V ④$
trr	Reverse Recovery Time		—		500	nS	Tj = 25°C, IF = 34A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge		—		2.9	μC	$V_{DD} \leq 30V @$
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by ${\sf L}_{\sf S}$ + ${\sf L}_{\sf D}.$					

3700

1100

200

—

—

_

pF

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_	_	0.83	°C/W	
R _{th} J-PCB	Junction-to-PC board	—	3.0	_	0/11	Soldered to a copper-clad PC board

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

Ciss

Coss

Crss

International

Fig 1. Typical Output Characteristics

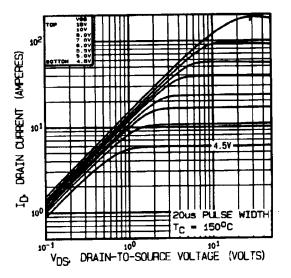


Fig 2. Typical Output Characteristics

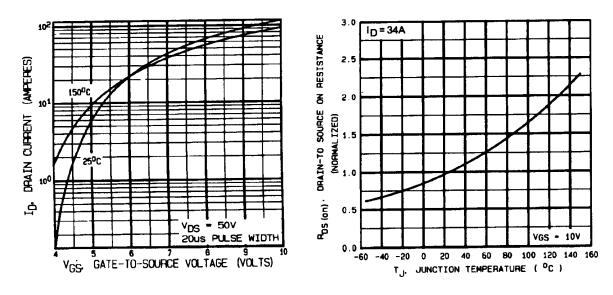
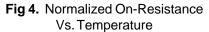



Fig 3. Typical Transfer Characteristics

International

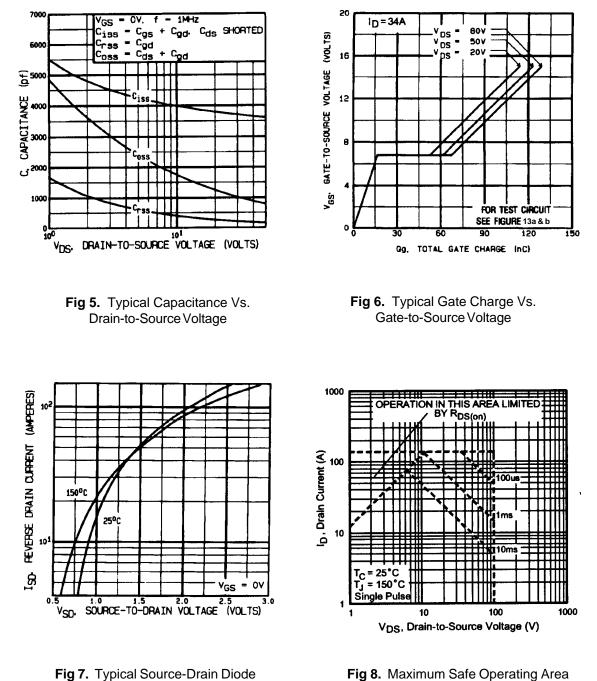
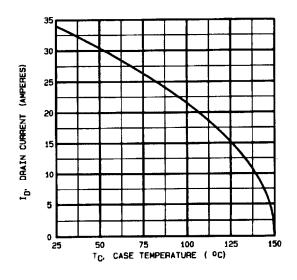
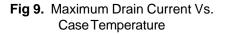




Fig 7. Typical Source-Drain Diode Fig Forward Voltage

International

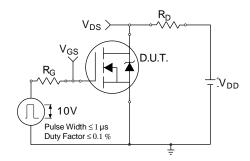


Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

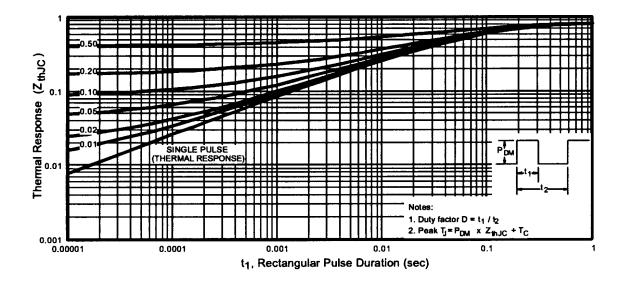


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

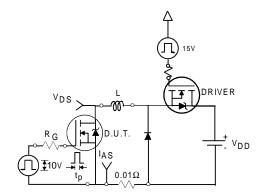


Fig 12a. Unclamped Inductive Test Circuit

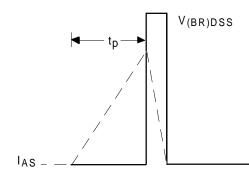


Fig 12b. Unclamped Inductive Waveforms

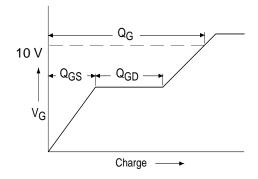


Fig 13a. Basic Gate Charge Waveform

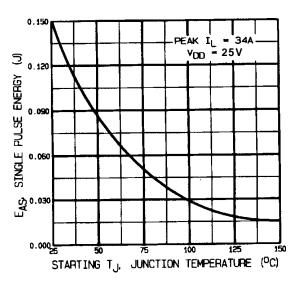


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

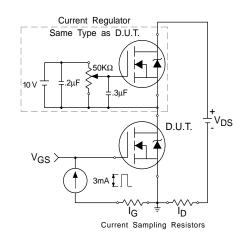
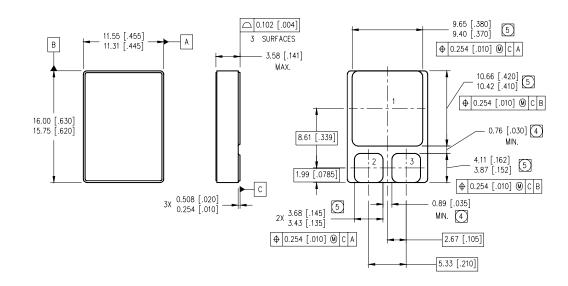


Fig 13b. Gate Charge Test Circuit


International

Footnotes:

① Repetitive Rating; Pulse width limited by maximum junction temperature.

 \odot VDD = 25V, starting TJ = 25°C, L= 0.26mH Peak IL = 34A, VGS = 10V

- 3 $I_{SD} \leq$ 34A, di/dt \leq 200A/µs, $V_{DD} \leq$ 100V, TJ \leq 150°C
- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%

Case Outline and Dimensions — SMD-1

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4 DIMENSION INCLUDES METALLIZATION FLASH.
- 5 DIMENSION DOES NOT INCLUDE METALLIZATION FLASH.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 01/02

PAD ASSIGNMENTS

3- SOURCE

1- DRAIN

2- GATE