CHT-IO-1202 PRELIMINARY DATASHEET

High Temperature 1200V/2A Silicon Carbide Common Cathode Dual Schottky Diode

General description

CHT-IO-1202 high temperature 1200V/2A Silicon Carbide Common Cathode Dual Schottky Diode is designed to achieve high performance in an extremely wide temperature range: typical operation temperature goes from $-55^{\circ} \mathrm{C}$ to $210^{\circ} \mathrm{C}$ while keeping leakage currents low.
This device is packaged in a hermetically sealed TO-257 metal package especially designed and qualified to sustain high temperature and power cycling. This package offers high voltage isolation between pins and with respect to the case, facilitating the mounting on a heatsink.

The diodes can be used in a variety of applications, including rectification, freewheeling, clamping and general purpose.

Features

- \quad Specified from $\mathbf{- 5 5}$ to $\mathbf{+ 2 1 0}{ }^{\circ} \mathrm{C}(\mathrm{Tj})$
- Reverse voltage: $\mathrm{V}_{\mathrm{R}}=\mathbf{1 2 0 0 V}$ (max)
- Forward current: $\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A}(\max @$ $210^{\circ} \mathrm{C}(\mathrm{Tj})$ and $\mathrm{V}_{\mathrm{F}}=1.3 \mathrm{~V}$)
- Forward voltage: $\mathrm{V}_{\mathrm{F}}=1.15 \mathrm{~V}$ (typ.@ $25^{\circ} \mathrm{C}(\mathrm{Tj})$ and $\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A}$)
- Junction capacitance: $\mathrm{C}_{\mathrm{j}}=11 \mathrm{pF}$ (typ. @ $\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}$)
- Hermetically sealed TO-257 metal package
- Pins electrically isolated from the case

Applications

- Free Wheeling
- Full bridge rectification
- Power supplies
- General purpose diode

Package Configuration

FRONT VIEW

123

TO257 (Pin1 = Cathode; Pin2= Anode 1; Pin3= Anode 2) (case floating)

Absolute Maximum Ratings

Reverse voltage V_{R}
Forward surge current $\mathrm{I}_{\text {FSM }}$ Junction temperature T_{j}

Operating Conditions

Reverse voltage $\mathrm{V}_{\mathrm{R}} \quad$ OV to 1200 V
Continuous forward current I_{F} 0 A to 2 A 0 V to 2 V Forward voltage V_{F} Junction temperature $-55^{\circ} \mathrm{C}$ to $+210^{\circ} \mathrm{C}$

Electrical characteristics (per diode)

Unless otherwise stated, $T_{j}=25^{\circ} \mathrm{C}$. Bold figures point out values valid over the whole temperature range $\left(T_{j}=-55^{\circ} \mathrm{C}\right.$ to $+210^{\circ} \mathrm{C}$).

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Forward voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=800 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1.15		V
		$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1.5		V
		$\mathrm{I}_{\mathrm{F}}=800 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=210^{\circ} \mathrm{C}$		1.3		V
		$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=210^{\circ} \mathrm{C}$		2.18		V
Reverse leakage current	I_{R}	$\mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=210^{\circ} \mathrm{C}$		30		UA
Breakdown reverse voltage	$\mathrm{V}_{\text {(BR) }}$		1200			V
Junction capacitance	Cj	$\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=100 \mathrm{kHz}$		10.4		pF

Thermal Characteristics

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Junction-to-Case Thermal re- sistance	$R_{\text {өנc }}$			4.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Typical performances

Figure 1: Diode I_{F} vs V_{F}

Figure 3: Diode V_{F} vs Temperature ($\mathrm{I}_{\mathrm{F}}=800 \mathrm{~mA}$)

Figure 2: Diode I_{R} vs V_{R}

Figure 4:Typical capacitance vs V_{R} $\left(\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{f}=100 \mathrm{kHz}, \mathrm{V}_{\mathrm{AC}}=25 \mathrm{mV}\right.$)

Package Dimensions

TO257 dimensions in mm (+/- 10\%)

Ordering Information

Product Name	Ordering Reference	Package	Marking
CHT-IO-1202	CHT-PLA6609A-TO257-T	TO-257	CHT-PLA6609A

Contact \& Ordering

CISSOID S.A.

Headquarters and contact EMEA:	CISSOID S.A. - Rue Francqui, 3-1435 Mont Saint Guibert - Belgium $\mathrm{T}:+3210489210-\mathrm{F}:+3210889875$ Email: sales@cissoid.com
Sales Representatives:	Visit our website: http://www.cissoid.com

Disclaimer

Neither CISSOID, nor any of its directors, employees or affiliates make any representations or extend any warranties of any kind, either express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose, and the absence of latent or other defects, whether or not discoverable. In no event shall CISSOID, its directors, employees and affiliates be liable for direct, indirect, special, incidental or consequential damages of any kind arising out of the use of its circuits and their documentation, even if they have been advised of the possibility of such a damage. The circuits are provided "as is". CISSOID has no obligation to provide maintenance, support, updates, or modifications.

