

Hi-Rel DC/DC CONVERTER MGDM-155: 150W POWER

Hi-Rel Grade ■■

3:1 High Input Voltage: 155 - 480 VDC Single Output Metallic case - 2 200 VDC Isolation

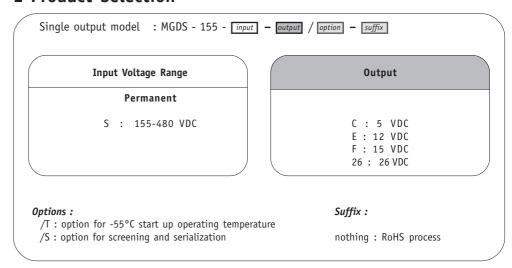
- Wide input range 155-480 Vdc
- 270Vdc input compliant with MIL-STD-704E/F
- Industry standard quarter brick package
- Power up to 155 W
- Wide temperature range : -40/+105°C baseplate
- High efficiency (up to 92%)
- Soft start
- Galvanic isolation 2 200 VDC
- Integrated input filter
- Synchronizable
- Parallelable in option
- No load to full load operation
- Fully protected by independant protection
 - Undervoltage lock-out
 - Overvoltage protection
 - Current limitation protection
 - Overtemperature protection
- No optocoupler for high reliability
- RoHS process

1-General

The MGDM-155 high input series is a complete line of high density wide input range DC/DC power modules designed for aerospace, military and high-end industrial applications. These modules use a patented fixed switching topology at 500 KHz providing wide input range, low noise characteristics and high power density. Standard models are available with wide input voltage range of 155-480 volts. The series include single output voltage of 5, 12, 15, 26 volts.

The MGDM-155 high input series include synchronization, parallelable with load sharing, trim and sense functions.

The synchronization function allows to synchronize more than one converter to one frequency or an external source frequency.

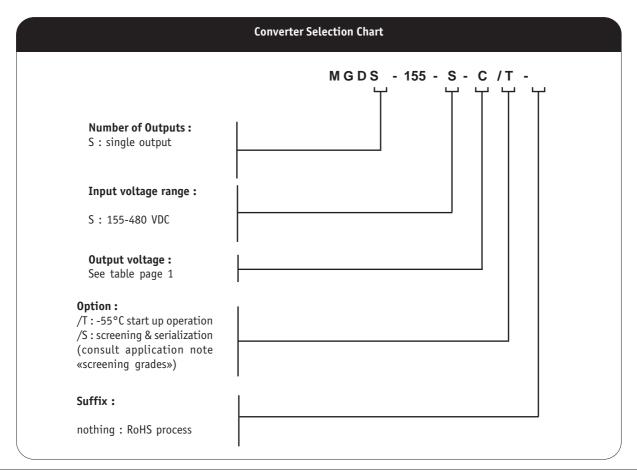

The parallelable function allows increased power with a true N+1 redundancy.

All the modules are designed with LC network filters to minimize reflected input current ripple and output voltage ripple.

The modules have totally independant security functions including input undervoltage lock-out, output overvoltage protection, output current limitation protection, and temperature protection. Additionnally a soft-start function allows current limitation and eliminates inrush current during start-up.

The design has been carried out with surface mount components, and is manufactured in a fully automated process to guarantee high quality. The modules are potted with a bicomponent thermal conductive compound to ensure optimum power dissipation under harsh environmental conditions.

2-Product Selection



2- Product Selection (continued)

Input range	Output	Current	Reference	Options	Suffix
155-480 VDC	5 VDC	20 A	MGDS-155-S-C	/T, /S	/
155-480 VDC	12 VDC	12,5 A	MGDS-155-S-E	/T, /S	/
155-480 VDC	15 VDC	10 A	MGDS-155-S-F	/T, /S	/
155-480 VDC	26 VDC	5,8 A	MGDS-155-S-26	/T, /S	/

3- Electrical Specifications

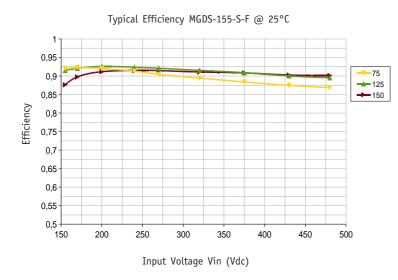
Data are valid at +25°C, unless otherwise specified.

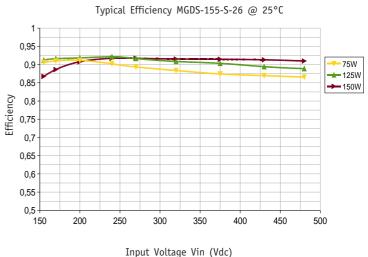
Parameter	Conditions	Limit or typical	Units	MGDS-155 - S
Input				
Nominal input voltage	Full temperature range	Nominal	VDC	270
Permanent input voltage range (Ui)	Full temperature range	Min Max.	VDC	155 - 480
Undervoltage lock-out (UVLO)	Turn-on voltage	Maximum	VDC	155
Start up time	Ui nominal Nominal output Full load : resistive	Maximum	ms	30
Reflected ripple current****	Ui nominal, full load BW = 20MHz	Maximum	% of input current	10
Input current in short circuit mode (Average)	Ui nominal Short-circuit	Typical	mA	60
No load input current	Ui nominal No load	Maximum	mA	35
Input current in inhibit mode	Ui nominal Inhibit	Maximum	mA	2
Output				
Output voltage *	Ui min. to max.	Nominal Nominal Nominal Nominal	VDC VDC VDC VDC	3.3 5 12 15
Set Point accuracy *	Ambient temperature : +25°c Ui nominal, 75% load	Nominal Maximum	VDC %	26 +/- 2
Output power **	At 105°c baseplate Ui min. to max.	Maximum	W	150
Output current ** 5V output 12V output 15V output 26V output	Full temperature range Ui min. to max.	Maximum Maximum Maximum Maximum	A A A	20 12,5 10 5,8
Ripple output voltage *** 5V output 12V, 15V output 26V output	Ui nominal Full load BW = 20MHz	Typical	mVpp mVpp mVpp	50 150 250
Output regulation * (Line + load + thermal)	Ui min. to max. 0% to full load	Maximum	%	+/- 1
Output Voltage Trim	As function of output voltage	Minimum Maximum	% %	90 * 110
Maximum admissible Capacitive load 5V, 12V output 15V output 26V output	Ui nominal Full load	Maximum Maximum Maximum	μ F μ F μ F	3 500 2 500 1 000
Efficiency	Ui nominal Full load	Typical	%	90

Note $\,^\star$: These performances are measured with the sense line connected..

Note **: It is recommended to mount the converter on a heatsink for this test, see section 9-3 and 9-9 for further details.


Note **: The ripple output voltage is the periodic AC component imposed on the output voltage, an aperiodic and random component (noise) has also to be considered. This noise can be reduced by adding an external decoupling capacitor connected between Ginand Gout. These capacitor should be layed-out as close as possible from the converter. Please refer to page 8 for more details.


Note ****: These performances are given with LC input filter.



4- Electrical Characteristics (continued)

4- Switching Frequency

Parameter	Conditions	Limit or typical	Specifications
Switching frequency	Full temperature range Ui min. to max. No load to full load	Nominal, fixed	500 KHz

5- Isolation

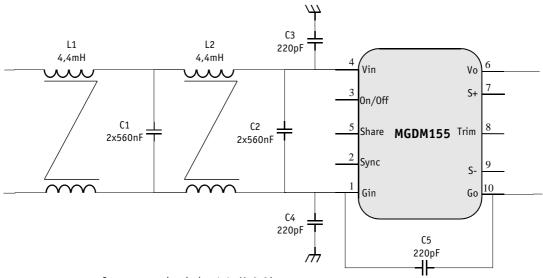
Parameter	Conditions	Limit or typical	Specifications
Electric strength test voltage	Input to output Input to case	Minimum Minimum Minimum	2 200 VDC / 1 min 2 200 VDC / 1 min 2 200 VDC / 1 min
Isolation resistance	Output to case 500 VDC	Minimum	100 M0hm

6- Protection Functions

Characteristics	Protection Device	Recovery	Limit or typical	Specifications
Input undervoltage lock-out (UVLO)	Turn-on, turn-off circuit with hysteresis cycle	Automatic recovery	Turn-on nominal Turn-off nominal	see section 3
Output current limitation protection (OCP)	Hiccup circuitry with auto-recovery	Automatic recovery	Nominal	120% of output current
Output overvoltage protection (OVP)	Overvoltage protection device with latch-up	Automatic recovery	Nominal	120% of output voltage
Over temperature protection (OTP)	Thermal device with hysteresis cycle	Automatic recovery	Nominal	120°C

7- Reliability Data

Characteristics	Conditions	Temperature	Specifications
Mean Time Between Failure (MTBF)	Ground fixed (Gf)	Case at 40°C Case at 85°C	510 000 Hrs 145 000 Hrs
According to MIL-HDBK-217F	Airborne, Inhabited, Cargo (AIC)	Case at 40°C Case at 85°C	285 000 Hrs 100 000 Hrs
Mean Time Between Failure (MTBF) According to IEC-62380-TR	Avionics Military Cargo	/	Consult factory


8- Electromagnetic Interference

Electromagnetic Interference requirements according to MIL-STD-461C/D/E standards can be easily achieved as indicated in the following section. The following table resumes the different sections covered by these standards.

Standard Requirements	MIL-STD-461C Standard	MIL-STD-461D/E Standard	Compliance with GAIA Converter Module & common mode capacitance
Conducted emission (CE): Low frequency High frequency	CE 01 CE 03	CE 101 CE 102	compliant module stand-alone compliant with additionnal filter
Conducted susceptibility (CS): Low frequency High frequency	CS 01 CS 02	CS 101 CS114	compliant with additionnal filter compliant with additionnal filter
Radiated emission (RE) : Magnetic field Electrical field	RE 01 RE 02	RE 101 RE 102	compliant with additionnal filter compliant with additionnal filter
Radiated susceptibility (RS) : Magnetic field Electrical field	RS 01 RS 03	RS 101 RS 103	compliant with additionnal filter compliant with additionnal filter

9-1 Module Compliance with MIL-STD-461C Standard

To meet MIL-STD-461C requirements and in particular CE03 requirement, Gaïa Converter recommends the use of the following front filter together with 4 external decoupling capacitors connected between inputs and case and between outputs and case. Please consult MIL-STD-461C EMI filter design note for further details.

L1: : Common mode choke 4,4mH 0,6A
L2: : Common mode choke 4,4mH 0,6A
C1: 2 x ceramic capacitors 560nF

C2: 2 x ceramic capacitors 560nF

C3, C4, C5*: Low ESR and ESL ceramic capacitor 220pF

(*) Must be placed as close as possible to the converter in order to reduce the path length or the connections to the pins and the baseplate.

9- Thermal Characteristics

Characteristics	Conditions	Limit or typical	Performances
Operating ambient temperature range at full load	Ambient temperature *	Minimum Maximum	- 40°C see below
Baseplate temperature	Base plate temperature	Minimum Maximum	- 40°C see curves herafter
Storage temperature range	Non functionning	Minimum Maximum	- 55°C + 125°C
Thermal resistance	Baseplate to ambient Rth(b-a) free air	Typical	11°C/W

The following discussion will help designer to determine the thermal characteristics and the operating temperature.

Heat can be removed from the baseplate via three basic mechanisms :

- Radiation transfert: radiation is counting for less than 5% of total heat transfert in majority of case, for this reason the presence of radient cooling is used as a safety margin and is not considered.
- Conduction transfert : in most of the applications, heat will be conducted from the baseplate into an attached heatsink or heat conducting member; heat is conducted thru the interface.
- Convection transfert : convecting heat transfer into air refers to still air or forced air cooling.

In majority of the applications, we will consider that heat will be removed from the baseplate either with:

- heatsink,
- forced air cooling,
- both heatsink and forced air cooling.

To calculate the maximum admissible ambient temperature the following method can be used.

Knowing the power used Pout and the efficiency η :

• determine the power dissipated by the module Pdiss that should be evacuated :

Pdiss = Pout
$$(1/\eta - 1)$$
 (A)

• then determine the thermal dissipation :

$$Tdiss = Rth(b-a) \times Pdiss$$
 (B)

where Rth(b-a) is the thermal resistance from the baseplate to ambient.

This thermal Rth(b-a) resistance is the summ of:

- the thermal resistance of baseplate to heatsink (Rth(b-h)). The interface between baseplate and heatsink can be nothing or a conducting member, a thermal compound, a thermal pad.... The value of Rth(b-h) can range from 0.4°C/W for no interface down to 0.1°C/W for a thermal conductive member interface.
- the thermal resistance of heatsink to ambient air (Rth(h-a)), which is depending of air flow and given by heatsink supplier.

The table hereafter gives some example of thermal resistance for different heat transfert configurations.

Heat transfert	Thermal resistance heatsink to air Rth(h-a)		Thermal resistance baseplate to heatsin	k Rth(b-h)	Global resistance
	No Heatsink baseplate only :	11°C/W	No need of thermal pa	ıd	11°C/W
Free air cooling only	Heatsink Thermaflo 424500B0000:	7,64°C/W	Bergquist Silpad*:	0,21°C/W	7,85°C/W
,	Heatsink Thermaflo 424800B0000:	3,5°C/W	Bergquist Silpad*:	0,21°C/W	3,71°C/W
	No Heatsink baseplate only :	6,9°C/W	No need of thermal pa	ıd	6,9°C/W
Forced air cooling 200 LFM	Heatsink Radian HS1568EX:	3,5°C/W	Bergquist Silpad* :	0,21°C/W	3,71°C/W
	Heatsink Thermaflo 424800B0000:	2,8°C/W	Bergquist Silpad*:	0,21°C/W	3,01°C/W
	No Heatsink baseplate only :	4,8°C/W	No need of thermal pa	ıd	4,8°C/W
Forced air cooling 400 LFM	Heatsink Radian HS1568EX :	2°C/W	Bergquist Silpad* :	0,21°C/W	2,21°C/W
	Heatsink Thermaflo 424800B0000:	1,8°C/W	Bergquist Silpad*:	0,21°C/W	2,01°C/W
Forced air cooling	No Heatsink baseplate only :	2,8°C/W	No need of thermal pa	ıd	2,8°C/W
1000 LFM	Heatsink Thermaflo 424800B0000:	1°C/W	Bergquist Silpad* :	0,21°C/W	1,21°C/W

Radian and Thermaflo are heasink manufacturers. «Silpad» © is a registered trademark of Bergquist.

Note*: Silpad performance are for Silpad 400 with pressure conditions of 50 Psi. Surface of MGDS-155 series is 3,3 inch2.

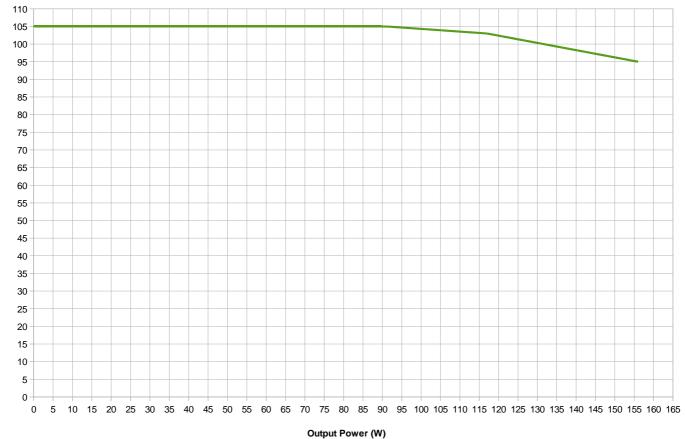
© Gaia Converter FC13-072.10/18 Revision E

T° base plate max (°C)

9- Thermal Characteristics (continued)

The two formulas (A) and (B) described in previous page:

• Pdiss = Pout $(1/\eta - 1)$ (A)


• Tdiss = Rth(b-a) x Pdiss (B)

conduct to determine the maximum ambient temperature admissible as a function of the maximum baseplate temperature of the module.

Knowing the maximum baseplate temparature $\mathsf{Tmax}_{\mathsf{baseplate}}$ the maximum ambient temperature is given by the following formula :

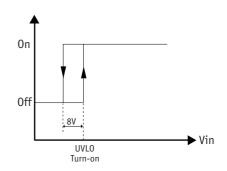
 $Ta = Tmax_{baseplate} - Tdiss$ (C)

MGDM-155 Series Maximum Baseplate Temperature Versus Maximum of Output Power @ Nominal Input

10- Environmental Qualifications

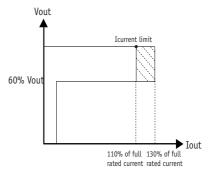
The modules have been subjected to the following environmental qualifications.

Characteristics	Conditions	Severity	Test procedure	
Climatic Qualificati	ons			
Life at high temperature	Duration Temperature / status of unit	Test D: 1 000 Hrs @ 125°C ambient, unit not operating	MIL-STD-202G Method 108A	
Altitude	Altitude level C Duration Climb up Stabilization Status of unit	40 000 ft@-55°C 30 min. 1 000 ft/min to 70 000 f@-55°C, 30 min. unit operating	MIL-STD-810G Method 500.5	
Humidity cyclic	Number of cycle Cycle duration Relative humidity variation Temperature variation Status of unit	10 Cycle I: 24 Hrs 60 % to 88 % 31°C to 41°C unit not operating	MIL-STD-810G Method 507.5	
Damp heat Temperature Duration Status of unit		93 % relative humidity 40°C 56 days unit not operating	MIL-STD-202G Method 103B	
Salt atmosphere Temperature Concentration NaCl Duration Status of unit		35°C 5 % 48 Hrs unit not operating	MIL-STD-810G Method 509.5	
Number of cycles Temperature Transfert time cycling Steady state time Status of unit		200 -40°C / +85°C 40 min. 20 min. unit operating	MIL-STD-202A Method 102A	
Temperature Shock Transfert time Steady state time Status of unit		100 -55°C / +105°C 10 sec. 20 min. unit not operating	MIL-STD-202G Method 107G	
Mechanical Qualific	ations			
Vibration (Sinusoidal) Number of cycles Frequency / amplitude Frequency / acceleration Duration Status of unit		10 cycles in each axis 10 to 60 Hz / 0.7 mm 60 to 2 000 Hz / 10 g 2h 30 min. per axis unit not operating	MIL-STD-810G Method 514.6	
Shock (Half sinus) Number of shocks Peak acceleration Duration Shock form Status of unit		3 shocks in each axis 100 g 6 ms 1/2 sinusoidal unit not operating	MIL-STD-810G Method 516.6	
Bump (Half sinus)	Number of bumps Peak acceleration Duration Status of unit	2 000 Bumps in each axis 40 g 6 ms unit not operating	MIL-STD-810G Method 516.6	



11- Description of Protections

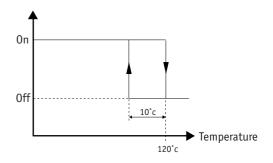
The MGDM-155 high input series include 4 types of protection devices.


11-1 Input Undervoltage Lockout (UVLO)

An undervoltage protection is implemented to switch off the converter as long as the input voltage has not reached the UVLO turn-on threshold (see section 3 for value) which is the minimum input voltage required to operate without damaging the converter.

11-2 Output Over Current Protection (OCP)

The MGDM-155 high input series incorporates a foldback current limit and protection circuit. When the output current reaches 120% of its full-rated current, the output voltage falls and output current drops along the foldback line as described in the figure herein. The module falls in hiccup mode and automatically resumes to normal operation when the overcurrent is removed.



11-3 Output Overvoltage Protection (OVP)

The MGDM-155 high input series has an internal overvoltage protection circuit that monitors the voltage accross the output power terminals. It is designed to limit the converter at 120% (+/-5%) of output voltage.

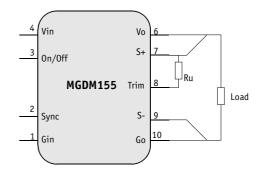
11-4 Over Temperature Protection (OTP)

A thermal protection device adjusted at 120°C (+/-5%) internal temperature with 10°C hysteresis cycle will inhibit the module as long as the overheat is present and will restore to normal operation automatically once the overheat is removed. The effectiveness of the OTP function is warranty with the module mounted on a heatsink.

12- Description of Functions

12-1 Trim Function

The output voltage Vo may be trimmed in a range of 90% to 110% of the nominal output voltage via an external trimmer or a fixed resistor.


Trim Up Function

Do not trim the module above 110% of nominal output voltage as the overvoltage protection will trigger.

Also do not exceed the maximum rated output power when the module is trimmed up.

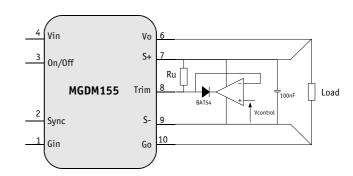
The trim up resistor must be connected to the S+ pin. The trim up resistor must be calculated with the following formula:

$$Ru = \frac{RI \cdot (Vo - Vref) \cdot Vo_{nom}}{(Vo - Vo_{nom}) \cdot Vref} - RI - R2$$

Trim Down Function

Do not trim down below 90% of nominal output voltage. The available output power is reduced by the same percentage that output voltage is trimmed down. The trim down resistor must be connected to S- pin. The trim down resistor must be calculated with the following formula:

$$Rd = \frac{(RI + R2) \cdot Vo - (R2 \cdot Vo_{nom})}{Vo_{nom} - Vo}$$


4 Vin Vo 6 3 0n/0ff S+ 7 MGDM155 Trim 8 2 Sync S- 10 Gin Go 10

Trim via a voltage

The output voltage is given by the following formula:

$$Vo = \left(1 + \frac{RI}{RI + R2} \cdot \left(\frac{Vcont}{Vref} - 1\right)\right) \cdot Vo_{nom}$$

In the schematics herein, Ru need to be calculated using the formula § **Trim Up Function** to determine the max output voltage required with no trim voltage.

Trim resistor values calculated automatically:

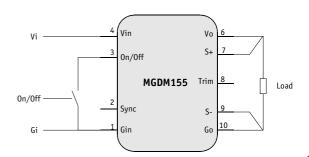
On-line calculators for trim resistor values are available on the Gaia converter website at: http://www.gaia-converter.com/calculator.

Parameter	Unit	Min.	Тур.	Max.
Trim reference	Vdc	2,45	2,5	2,55
Resistor R1	Ohm	/	39K	/
Resistor R2	Ohm	/	270	1

12- Description of Functions (continued)

12-2 Sense Function

If the load is separated from the output by any line lenght, some of these performance characteristics will be degraded at the load terminals by an amount proportional to the impedance of the load leads. Sense connections enable to compensate the line drop at a maximum of +/-10% of output voltage. The overvoltage protection will be activated and module will shut down if remote sense tries to boost output voltage above 110% of nominal output voltage. Connection is described in figure herein.

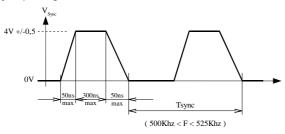


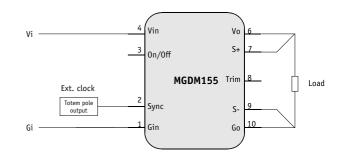
12-3 On/Off Function

The control pin 3 (On/Off) can be used for applications requiring On/Off operation. This may be done with an open collector transistor, a switch, a relay or an optocoupler. Several converters may be disabled with a single switch by connecting all On/Off pins together.

- The converter is disabled by pulling low the pin 3.
- No connection or high impedance on pin 4 enables the converter.

By releasing the On/Off function, the converter will restart within the start up time specifications given in table section 3. For further details please consult "Logic On/Off" application note.

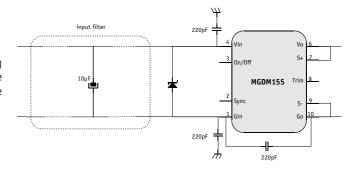



Parameter	Unit	Min.	Тур.	Max.	Notes, conditions
On/Off module enable voltage	Vdc	3.5	/	5	Open, the switch must not sink more than 100µA
On/Off module disable voltage	Vdc	0	/	0.5	The switch must be able to sink 1mA
On/Off alarm level	Vdc	0	/	0.5	OTP or OCP faulty module
On/Off module enable delay	ms	/	/	30	The module restarts with the same delay after alarm mode removed
On/Off module disable delay	μs	/	/	250	Vi nominal, full load

12-4 Synchronization Function

An external clock with pulse signals can be used to lock one or more converters (active on rising edge). The external clock signal should have a frequency range from 500KHz to 525KHz, a low level below 0,5V a high level of 4V (+/-0.5V), a rise time of 50 ns max., a fall time of 50ns max., and a pulse width of 300 ns maximum.

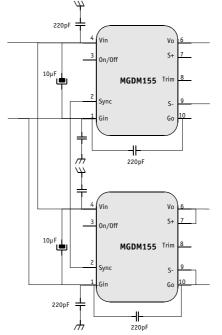
Several converters can be synchronized by connecting their Sync pin together.



13- Application Notes

13-1 Input Capacitor Coupling

It is recommended to use a minimum of $10\mu F$ decoupling capacitor connected across the Vin anf Gin lines of the converter to restore a low line impedance and improve stability

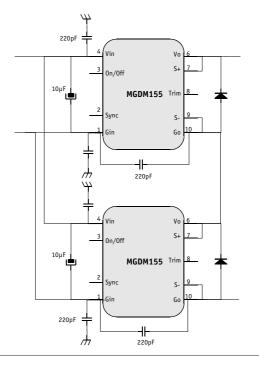


13-2 Synchronization of Modules

The MGDM-155 high input series provides a synchronization function trough the pin 2 (Synchro) to enable automatic synchronisation between several converters.

If several converters are used, they lock themselves into the highest switching frequency.

The synchronization signal available on pin 2 is referenced to ground in (Gi).

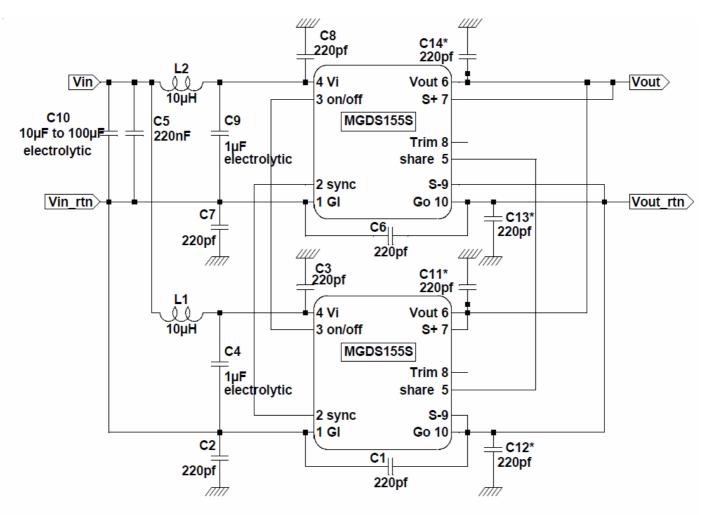


13-3 Connection of Modules in Series

The output of single output units can be connected in series without any precautions to provide higher output voltage level.

GAIA Converter recommends to protect each individual output with a Shottky diode rated with the maximum current of the converter to avoid reverse polarity at any output. Reverse polarity may occur at start up if the output voltages are not synchronous.

Special care must be taken to layout properly low level signals Sync. and On/Off from high current tracks. They must be shielded with GIA signal to avoid any disturbances by noises and crosstalk.

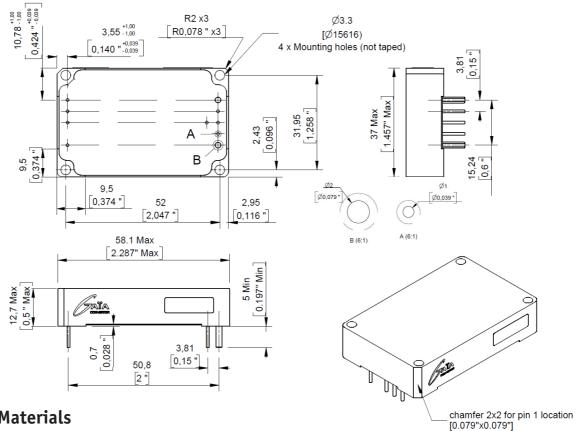

13-4 Connection of Modules in Parallel

The output of single output units can be connected in parallel to provide higher output current.

routed, with coper plane around.

Special care must be taken to layout properly low level signals Sync. and On/Off from high current tracks. They must be shielded with GIA signal to avoid any disturbances by noises and crosstalk.

R are optional in case of required triming.


* C11,C12,C13,C14 are optional for noise reduction improvment

11- Dimensions

Dimensions are given in mm (inches). Tolerance: +/- 0,2 mm (+/- 0.01 ") unless otherwise indicated. Weight: 75 grams (2.10 Ozs) max.

12- Materials

Case: Aluminium alodined coating.

Pins : Brass copper flash + Nickel 2 to 4μ + Flash Au.

13- Product Marking

Side face : Company logo.

: Module reference : MGDx-155-»X»-»Y».

Date code: year and week of manufacturing, suffix, /option.

14- Connections

Bottom view

Pin	Single Output			
1	- Input (Gi)			
2	Synchro (Sync)			
3	0n/0ff			
4	+ Input (Vi)			
5	Share			
6	+ Output (Vo)			
7	Sense + (S+)			
8	Trim (Trim)			
9	Sense - (S-)			
10	0 - Output (Go)			

For more detailed specifications and applications information, contact:

International Headquarters

GAÏA Converter - France ZI de la Morandière

33185 LE HAILLAN - FRANCE

Tel.: + (33)-5-57-92-12-80 Fax: + (33)-5-57-92-12-89 Fax: (514)-333-4519

North American Headquarters

GAÏA Converter Canada, Inc 4038 Le Corbusier Blvd LAVAL, QUEBEC - CANADA H7L 5R2

Tel.: (514)-333-3169

Represented by :								